Applicazioni della fisica delle interazioni radiazione materia: radioterapia e adroterapia

G. Battistoni, S. Muraro INFN Milano giuseppe.battistoni@mi.infn.it silvia.muraro@mi.infn.it

Outline

- 1. Concetti generali della radioterapia
- 2. Richiamo di alcuni aspetti delle interazioni delle particelle cariche con la materia
- 3. Radioterapia con adroni carichi: l'adroterapia
- 4. Cenni su effetti biologici delle radiazioni
- 5. Problematiche dovute alle interazioni nucleari e uso terapeutico di nuclei con Z>1
- 6. Tecnologie di accelerazione
- 7. I Centri di Adroterapia oggi
- 8. Attività di ricerca in corso: il monitoraggio on-line dei trattamenti e le misure di sezione d'urto di frammentazione nucleare

Appendici:

- 1. La pianificazione dei trattamenti
- 2. Interazioni Radiazione Materia e Imaging Medicale
- 3. Rivelatori di particelle per il controllo di qualità dell'adroterapia

1) Concetti generali della radioterapia

La radioterapia oncologica

La radioterapia consiste nell'uso medico di radiazioni per il trattamento del cancro per controllare le cellule maligne.

La radioterapia può essere utilizzata come trattamento curativo o coadiuvante ("palliativo"):

- trattamento terapeutico (dove la terapia ha come obiettivo la cura e l'aumento della sopravvivenza)
- cura palliativa (dove la cura non è possibile e l'obiettivo è soprattutto il sollievo sintomatico)

La radioterapia oncologica

Tipi di radiazione

- → "Convenzionale": fotoni e elettroni
- ➔ Adroterapia ("Particle Therapy"): protoni e ioni leggeri (Z<18)</p>

Più direttamente connessa alle problematiche di fisica nucleare

Scopi

- → Fornire un'elevata dose di radiazione nell'area tumorale
- → Dose conforme sul tumore
- → Evitare tessuti sani e organi a rischio

Radioterapia esterna "convenzionale" con fotoni

In genere denominati come raggi X

External beam radiation: e⁻ Linac per produrre fotoni

Acceleratori lineari di elettroni 6 – 15 MeV

Absorbed Dose

The absorbed dose, D, is given by:

 $D = \Delta E / \Delta m$

Where dE is the mean energy imparted to matter of mass dm

The unit of absorbed dose is Gray (Gy) **1** Gray = 1 J kg⁻¹

Absorbed Dose

Nella radioterapia con fotoni la Dose è determinata dall'energia depositata per ionizazzione dagli elettroni (e positroni) secondari generati dalle interazioni dei fotoni stessi:

- Effetto fotoelettrico
- Effetto Compton
- Produzione di coppie

Biological Effect of Dose

maggiore è la dose, maggiore è la probabilità di provocare la morte cellurare

Tipicamente un trattamento radioterapico richiede una dose dell'ordine di 60-80 Gy

Normalmente erogata in n "frazioni" dell'ordine di ~2 Gy

Range e⁺/e⁻ in Water

Dose vs Profondità per elettroni/fotoni

La strategia base del trattamento

Terapia conformazionale

2) Richiamo di elementi di interazione radiazione-materia di particelle cariche

Stopping power (dE/dx) of heavy particles

Low behaviour : z_{eff}

At $\mathbb{R} \sim 10^{-2}$ the electrons have the same velocity of the projectile: energy transfer mechanism is no more efficient, reducing stopping ions! $z \rightarrow z_{eff}$

Stopping Power and Linear Energy Transfer (LET)

- Stopping power: energy lost by the particle
- In Medical Physics, we are interested to how much energy is transferred from the particle to the medium (tissue): for thin, low density materials, delta-ray electron can escape and therefore only part of the energy lost by the particle is deposited.
- We prefer to use the concept of LET (Linear Energy Transfer): it is the rate at which energy is transferred to the medium and therefore the density of ionisation along the track of the radiation.
- For a "thick" medium (all delta-ray electrons stop in the medium):

$$\mathsf{LET} = -\frac{\mathsf{dE}}{\mathsf{dX}}$$

Linear Energy Transfer

- The LET is the rate at which energy is transferred to the medium and therefore represents the density of ionisation along the track of the radiation.
- LET units are usually expressed in terms of keV/ μ m or MeV/cm

Radiation that is easily
stopped has a high LET and
vice versa

Radiation	LET keV/µm
1 MeV ©-rays	0.5
100 kV _p X-rays	6
20 keV ®-particles	10
5 MeV neutrons	20
5 MeV (-particles	50
1 GeV muon	0.2

Range of Charged Particles

The range **R** of a charged particle can be evaluated in the "Continuous Slowing Down Approximation" (CSDA) in the following way:

(= No Scattering)

useful scaling laws:

$$\frac{R_a(b)}{R_b(b)} = \frac{m_a z_b^2}{m_b z_a^2} \xrightarrow{\text{for the same } \beta}{R \propto mass \cdot z^{-2}}$$

$$\frac{dE}{dx}\Big|_{nonrel} \stackrel{\text{μ}}{=} \frac{1}{v^2} \otimes R = \dot{0}_0^{E_0} \frac{1}{\frac{dE}{dx}} dE \stackrel{\text{μ}}{=} E_0^2$$

Range in Water for different projectiles

Range fluctuations

The dE/dx is a stochastic process: fluctuation of dE/dx (*Landau Fluctuations, delta-rays...*) induce and Range fluctuations: "Straggling"

Cosa succede a fine range per adroni carichi: il picco di Bragg

3) La radioterapia con adroni carichi "Adroterapia"

Hadrons for Radiotherapy

1946, R. Wilson: first proposal to use hadrons for radiotherapy

- 1954 Berkeley treats the first patient and begins extensive studies with various ions
- 1957 first patient treated with protons in Europe at Uppsala
- 1961 collaboration between Harvard Cyclotron Lab. and Massachusetts General Hospital
- 1993 patients treated at the first hospital-based facility at Loma Linda
- 1994 first facility dedicated to carbon ions operational at HIMAC, Japan
- 2009 first European proton-carbon ion facility starts treatment in Heidelberg

Fasci di energia diversa depositano energia a profondità diverse nel tessuto→ rilascio di dose modulato lungo la direzione del fascio

Conformazione: il concetto di Spread Out Bragg Peak (SOBP)

27

The physics of Bragg Peak

Ion Therapy: the lateral scattering

Code della distribuzione previste dalla teoria di Moliere dello scattering multiplo

Riconsiderando gli esempi precedenti

(fonte: Prof. U.Amaldi)

Modulazione della profondità e capacita' di conformazione

muovendo il fascio in X,Y e variandone l'energia (profondità raggiunta)

tutto il bersaglio puo' essere efficacemente irradiato

Active Dose Delivery: "raster scanning"

Soll/Ist-Werte IES 42. E=71, F=4, I=13

Protoni o nuclei con Z>1 ?

Occorre considerare diversi aspetti. In particolare:

- Caso del ¹²C: Z=6. A parità di β LET(¹²C) ~ 36 LET(p). Effetto biologico?
- Effetti di fisica nucleare
- Tecnologia di accelerazione
4) Cenni su effetti biologici delle radiazioni

Interdisciplinary aspects: Physics and Biology

<d> ~ 0.3 nm

Damage in nucleus

High LET

Local deposition of high doses

Low LET

Homogeneous deposition of dose

Microscopic distribution of the hadronic ionizations

Biological effects

The biological effect of a given dose depends on the type of radiation, the target tissue, the fraction of an organ exposed and other factors.

Efficacia Biologica Relativa (RBE)

 RBE: rapporto tra la dose di una radiazione di riferimento (D_{RX}) e la dose della radiazione in esame (D_r) necessarie per ottenere lo stesso livello dell'effetto biologico considerato

Uso di diverse qualità di radiazione. Il concetto di RBE

Dose Effettiva Biologica

Il danno biologico è proporzionale al prodotto: RBE * Energia deposta

Raggi X	RBE = 1
Protoni	RBE ~ 1.1
12-C	RBE ~ 3-4 (dipende dal LET)

Attenzione:

RBE = F(particella, Energia, LET, tipo di cellula, ...) <u>è il "dato" più delicato per il radioterapista</u>

Pianificazione del SOBP per ioni carbonio: "Dose Biologica Efficace"

La valutazione del fattore RBE soffre di incertezze rilevanti (>20 – 30%). Le incertezze esistono sia nelle misure sperimentali di RBE che nei modelli teorici.

Ad oggi questa è una delle incertezze più importanti nei calcoli per l'adroterapia con ioni per Z>1

5) Problematiche dovute alle interazioni nucleari e uso terapeutico di nuclei con Z>1

Nuclear reactions: elastic and non-elastic

In general there are two kind of nuclear reactions: elastic and non-elastic.

- Elastic interactions are those that do not change the internal structure of the projectile/target and do not produce new particles. There is no threshold for elastic interactions
- Non-elastic reactions are those where new particles are produced and/or the internal structure of the projectile/target is changed (eg exciting a nucleus). A specific non-elastic reactions has usually an energy threshold below which the reaction cannot occur (the exception being neutron capture)

Interazioni inelastiche protone-nucleo

molto bassa con range molto corto

Interazioni inelastiche nucleo-nucleo

- Fragments from "quasi-projectile" have V_{frag}~V_{beam} and narrow emission angle. Longer range then beam
- The other fragments have wider angular distribution but lower energy. Usually light particles (p,d,He)

L'uso di nuclei con Z>1

Exp. Data (points) from Haettner et al, Rad. Prot. Dos. 2006 Simulation: A. Mairani PhD Thesis, 2007, Nuovo Cimento C, 31, 2008

	2.6 I			-			²⁸ S	157	75.	4 N	Лe	V/ı	J.				BR	RDC ONA		НА		N Dry
ose	2.2 2.0 1.8		Sc ne gra	opra elle (ada	a E= coll tan	=29 isic	00 M oni r nte i	/leV/ nucl n re	/u s eon gim	i ap ie-r ie c	ore nucl di so	la p leoi ciar	proc ne, ne	luzi e si adre	one en onic	e di a tra co	Ξ. π .					
р ра	1.4					;																
aliz	1.2			:														F .				
- Would	1.0					••••	••••		• • • • •					• • • • • •			/,			••••		•
-	0 . 8								:	•			- • -		÷							• •
	0 . 6																					•
	0.4		· · · ·			••••	••••	•••••••	• • • • •		• • • •	••••	···	••••••••	÷···		··÷	•••••••		\sim	•••••••	· ·
	0,2			 																	· · · ·	•
	0	1	2	3 4	4 5	6	7	8	9 1	.0 1	1 12	2 13	14	15	16 1	.7 18	19	20 2	21 2	2 23	24	25

Non è conveniente utilizzare ioni più pesanti dell'Ossigeno

Straggling dependence on mass

è conveniente utilizzare ioni piu' pesanti dei protoni

Diffusione laterale (MCS)

ioni piu' pesanti dei protoni consentono una localizzazione trasversale più precisa

6) Tecnologie di accelerazione

Range di energia utile:

Ciclotroni

Estrazione continua Energia di estrazione fissa Può essere ridotta solo con assorbitori (diminuendo l'intensità)

Sincrotroni

7) I Centri di adroterapia oggi

Charged Particle Therapy in the world

End of 2023:

PARTICLES	PATIENTS TOTAL	DATES OF TOTAL	
He	2054	1957-1992	
Pions	1100	1974-1994	
C-ions	57498	1994-2023	
Other ions	433	1975-1992	
Protons	350336	1954-2023	
Grand Total	411421	1954-2023	

127 facilities in operation (49 in USA, 25 in Japan, 8 in China, 27 in Europe + Russia,...)

USA: only protons China: 1 p-C, 1 C, 6 p Japan: 1 p-C, 6 C, 18 p Germany: 2 p-C, 3 p Taiwan: 1 C, 3 p South Korea: 1 C, 2-p Italy: 1 p-C + 3 p Austria: 1 p-C

32 facilities under construction

(8 in China, 5 in USA, 2 in Japan, 9 in Europe+Russia)
1 C
1 C-He (South Korea)
1 p-C (USA)

Source: Particle Therapy Co-Operative Group https://www.ptcog.site/

Hyogo Dual Center

Mitsubishi: turn-key system

500 carbon patients

CNAO - Pavia

Il sincrotrone del CNAO

<u>X-ray imaging system</u>: To check patient positioning CNAO: 3 treatment rooms + 1 exp. room

Dose delivery system: It controls the steering of the beam and counts the number of delivered particles

Size of the irradiation field at patient position: $20 \times 20 \text{ cm}^2$

ProtonTerapia di Trento

inizio terapia clinica a fine Ottobre 2014

Il ciclotrone

$E_{max} = 226 \text{ MeV}$

Trento ProtonTherapy

2 Treatment rooms with rotating 360° gantries + 1 fixed beam research room

Delivered energy: 70 - 226 MeV

IEO - Milano

Tha

1 treatment room with rotating gantry IBA compact system Proteus One

30.11.2023 First patient

2025: Full operation 68

8) Attività di ricerca in corso:

- Il monitoraggio on-line dei trattamenti
- Misure di frammentazione nucleare per l'adroterapia

Le incertezze: il problema del range

AAPM (American Association of Physicists in Medicine), August 2012

Delegates were asked what they considered as the main obstacle to proton therapy becoming mainstream:

- 35 % unproven clinical advantage of lower integral dose
- •19 % never become a mainstream treatment option
- 33 % range uncertainties

http://medicalphysicsweb.org/cws/article/research/50584

RESEARCH

Aug 22, 2012

Will protons gradually replace photons?

The dose distribution advantages offered by proton therapy, particularly with the introduction of pencil-beam scanning, have stimulated increasing interest in this modality. But is the large capital expenditure required to build a proton therapy facility hindering the widespread implementation of this technique? And how big a problem is range uncertainty, which can prevent proton therapy from meeting its full potential?

Protons versus IMR7

Incertezze sul Range

- Incertezze sull'energia
- Effetti dovuto alle differenze di densità
 - Posizionamento del paziente
 - Bersaglio in movimento
- Calibrazione della CT (ottimizzata per i raggi X e non per ioni)
- Artefatti della CT
- Modificazioni anatomiche (movimenti di organi, variazioni di densità...)
- Incertezza sull'RBE

Monitoraggio del range con i secondari

I fasci di p, ¹²C (o altri ioni) generano una grande quantità di secondari:

- "prompt" γ s (diseccitazione nucleare),
- γ da annichilazione (prodotti da decadimento β⁺ di nuclei eccitati,
- neutroni
- Particelle e frammenti nucleari carichi.

Rivelatori esterni al paziente possono essere utilizzati come monitor del trattamento

γ di annichilazione

Baseline: attività indotta β^+

• Isotopi principali: ¹¹C (20 min), ¹⁵O (2 min), ¹⁰C (20 s)

tempo di dimezzamento breve rispetto ai radionuclidi utilizzati

per la diagnostica medica (ore)

- Bassa attività: tempi di acquisizione di qualche minuto. Statistica del segnale molto ridotta
- Wash-out metabolico degli emettitori $\beta^{\scriptscriptstyle +}$: importante misurare in vivo ma complicato. Come alternativa è possibile misurare
 - in-room (aumentando il tempo di permanenza nella sala di trattamento)
 - off-room (perdendo parte del segnale, avendo problemi di riposizionamento ed accettando in parte il wash-out metabolico)

Therapy beam	¹ H	³ He	⁷ Li	¹² C	¹⁶ O	Nuclear medicine
Activity density / Bq cm ⁻³ Gy ⁻¹	6600	5300	3060	1600	1030	10 ⁴ – 10 ⁵ Bq cm ⁻³

Correlazione tra attività β^+ e dose

L'interazione tra il protone o ione incidente con i nuclei bersaglio produce emettitori β^+ .

Rilevando i fotoni back-to-back da 511 keV prodotti dall'annichilazione del positrone, si ricava la distribuzione spaziale dei punti di decadimento β^+ , che può essere messa in relazione alla posizione del picco di Bragg

Gli isotopi emettitori β^+ più rilevanti

Reaction	Threshold energy	Half life	Positron energy	
	[MeV]	[min]	[MeV]	
¹⁶ O(p, pn) ¹⁵ O	16.79	2.037	1.72	
${}^{16}O(p, \alpha){}^{13}N$	5.66	9.965	1.19	
¹⁴ N(p, pn) ¹⁸ N	11.44	9.965	1.19	
¹² C(p, pn) ¹¹ C	20.61	20.390	0.96	
${}^{14}N(p, \alpha){}^{11}C$	3.22	20.390	0.96	
$^{16}O(p, \alpha pn)^{11}C$	59.64	20.390	0.96	

Table 1.1 Relevant positron emitter reactions in tissue from proton therapy.

Irraggiamento della durata di 442 s, con un fascio di protoni, di un bersaglio di PMMA:

build-up e decadimento dei nuclei principali prodotti.

Dopo circa 10 minuti dalla fine dell'irradiazione, solo il ¹¹C contribuisce ai conteggi.

In-Vivo range measurement with PET: workflow and potential

W. Enghardt et al.: Radiother. Oncol. 73 (2004) S96

Positron Emission Tomography in vivo

Primo tentativo di in-beam PET: GSI, con ~400 pazienti

Le alternative

Secondari carichi a grande angolo possono essere facilmente tracciati e correlati con la posizione del picco di Bragg

Il caso dei Prompt Photons

I fotoni da diseccitazione nucleare sono prodotti abbondantemente da fasci di protoni e ioni ¹²C

La regione di emissione si estende lungo tutto il cammino del fascio. Si è mostrato che termina vicino al picco di Bragg per entrambi i tipi di fascio

Correlazione fra picco di Bragg e distribuzione del punto di emissione di fotoni prompt (fasci di protoni)

 $t_{emissione} \ll 1 \text{ ns}$

"Prompt"

Fotoni prompt e fotoni di fondo

Dal punto di vista sperimentale si è visto che c'è un abbondante fondo di gamma non correlati prodotti dai neutroni. Questo fondo è dipendente da fascio, energia e sito di emissione (composizione nucleare del materiale)

Emissione a «righe» (livelli eccitati) + fondo continuo

Range di energia utile: ~2-10 MeV

Energia >> energia dei fotoni rivelati in medicina nucleare (scintigrafia): Serve un nuovo tipo di rivelatore

Test Beams: y's @GANIL

Collimator

Scintillato

- 73 AMeV carbon beam
- γ peak correlated with BP
- Neutrons background (TOF rejection?)

La slit camera

Posizionando la camera a 90° rispetto all'asse del fascio, si può misurare un profilo 1-D di emissione di prompt gamma

J Smeets et al. Phys. Med. Biol. 57 (2012) 3371

Knife-edge-slit camera by IBA

Testato su paziente per la prima volta a Dresda nel 2016

& Politecnico di Milano

Nuovo approccio: particelle cariche

Le particelle cariche hanno diverse caratteristiche favorevoli:

- L'efficienza di rivelazione è quasi 100%
- Possono essere facilmente tracciate indietro (back-tracked) fino al punto di emissione -> possono essere correlate al profilo del fascio ed al picco di Bragg

MA...

- Efficiente solo con ioni (Z>1)
- Non sono numerose quanto i fotoni
- La soglia in energia per uscire dal paziente è ~ 30 – 50 MeV
- Subiscono scattering multiplo nel paziente -> peggiora la risoluzione nel tracciamento indietro

First Exp. Test at large angle with ¹²C ions

The Project @ CNAO

INnovative Solutions for In-beam DosimEtry in Hadrontherapy Univ. di Pisa, Univ. Roma "La Sapienza", Univ. di Torino, INFN Milano

- Gestione di doppio segnale
- Integrato in sala di trattamento
- Fornisce un feedback in-beam sul range del fascio
- Sfida: integrazione delle informazioni da segnale PET e particelle cariche

Il sistema INSIDE PET

- Due teste PET per misurare i fotoni back-to-back da 511 keV e ricostruire la mappa di attivazione β⁺.
- Due pannelli piani: ampiezza 10 cm x 20 cm => 2 x 4 moduli di rivelazione;
- Risoluzione attesa: di 1-2 mm nella direzione del fascio

Each module: pixelated LSO matrix 16 x 16 pixels, 3 mm x 3 mm crystals (pitch 3.1mm)

LSO matrix readout: array of SiPM (16x16 pixels) coupled one-toone.

Custom TOF-PET asic (Courtesy of M. Rolo, LIP and ENDOTOFPET EU project)

Il tracciatore di particelle cariche di INSIDE

Back-tracking nella direzione del fascio di frammenti di secondari carichi (principalmente protoni) emessi a grande angolo rispetto alla direzione del fascio

<u>о</u>

8 piani di 2 strati di **fibre** scintillanti orientate ortogonalmente. SiPMs Read Out (1 mm²).

Ricostruzione: deconvoluzione dell'assorbimento dentro il paziente dal punto di emissione

Primo test su 10 pazienti al CNAO nel 2019-2021 Un secondo trial con altri 10 pazienti inizia in questi giorni

The clincal trial @CNAO

Un Clinical Trial è iniziato nel luglio 2019 per valutare le performance del sistema INSIDE in ambiente clinico

https://clinicaltrials.gov/ct2/show/study/NCT0 3662373?term=NCT03662373&draw=1&rank= 1

Patologie selezionate:

- 1. Meningioma e cancro del nasofsaringe trattati con fasci di **protoni**
- Carcinoma adenoido-cistico (Adenoid Cystic Carcinoma (ACC)) e cordoma del clivus trattati con fasci di ioni carbonio, <u>10 pazienti</u>

Trattamento standard con ¹²C

- Una CT iniziale (CT1) è usata per pianificare il trattamento
- In patologie dove ci si aspettano cambiamenti morfologici, può essere richiesta una seconda CT di rivalutazione (**CT2**)

In questo paziente la CT di rivalutazione mostra una **significativa differenza nella densità** della zona attraversata dal fascio. La regione segnata in arancione si è svuotata nella CT2 e quindi ci aspettiamo di essere in grado di vedere una differenza nella mappa dei punti di emissione (in azzurro), visto che la densità nelle cavità è cambiata.

L'analisi della mappa dei punti di emissione può essere usata per valutare variazioni di range dentro il paziente e per segnalare la necessità di una CT di rivalutazione.

Misure di Fisica Nucleare di interesse per l'Adroterapia

L'efficacia biologica delle particelle cariche (frammenti nucleari) dipende dalla loro carica e dalla loro energia.

- → La valutazione di un <u>piano di trattamento</u> dipende quindi in modo fondamentale dalla conoscenza di **quali e quanti frammenti nucleari** vengono prodotti, e con **quale spettro di energia**.
- → Il monitoring on-line presuppone una corretta conoscenza dei frammenti secondari prodotti

I **modelli di calcolo** attualmente in uso (Monte Carlo) soffrono di grandi **incertezze** nel riprodurre i processi nucleari.

Servono dati affidabili di sezioni d'urto (soprattutto di tipo differenziale: $d^2\sigma/dEd\Omega$)

Nel range di energie e proiettili di interesse per l'adroterapia esistono ancora pochi dati a disposizione. Per esempio: <u>http://hadrontherapy-data.in2p3.fr/</u>

(Lab. GANIL in Francia, interazioni di ¹²C a 50 MeV/u e 95 MeV/u)

Esempio di confronto di dati sperimentali e simulazioni MC (2016): C-C @ 50 MeV/u (Ganil)

Attività a Milano: l'esperimento FOOT (FragmentatiOn Of Target)

Obiettivi:

FOOT è un esperimento di fisica nucleare applicata con lo scopo di misurare le sezioni d'urto di frammentazione nucleare doppio differenziali (in energia ed angolo) di interesse per la **particle therapy** e la **radioprotezione nello spazio**

C, O, H, (Si, Al) $d^2\sigma$ He+ 0 $d\Omega dE_{kin}$ Goal accuracy <5%

L'apparato di FOOT

Goals:

- Accuracy on $d\sigma/dE_{kin}$ better than 10%
- Accuracy on $d\sigma/(dE_{kin}d\Omega)$ better than 5%
- Charge Z identification 3%
- Mass A identification 5%

Z: from combination of β and dE/dx **A**: from combination of (β , E_{kin}) or (p, E_{kin}) or (β ,p)

Un risultato preliminare

Altri obiettivi dell'esperimento FOOT

Programma di misure di sezioni d'urto <u>richiesto da NASA e ESA</u> per calcoli di radioprotezione nelle missioni spaziali di lunga durata e lontane dalla "Low Earth Orbit" (progettazione di schermature).

Alcune estensioni del programma di ricerca di FOOT:

- Misure dedicate alle interazioni dell'⁴He
- Integrazione del rivelatore per permettere la misura della produzione di neutroni veloci

END

Per ulteriori informazioni e approfondimenti contattare:

giuseppe.battistoni@mi.infn.it

silvia.muraro@mi.infn.it