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Overview:
General concepts:
Ø Reaction Rate, Cross Section, Fluence
Ø Phase space 
Ø The Boltzmann equation
Particle Transport
Ø Applications
Ø MC assumptions
Ø Implementation
Results and Errors:
Ø Statistical errors (single histories, batches)
Ø Systematic errors and other mistakes
Biased MC vs Analog MC:
Ø General Concept



Phase space:
• Phase space: a concept of classical Statistical Mechanics
• Each Phase Space dimension corresponds to a particle degree of 

freedom
• 3 dimensions correspond to Position in (real) space: x, y, z
• 3 dimensions correspond to Momentum: px, py, pz

(or Energy and direction: E, θ, φ )
•More dimensions may be envisaged, corresponding to other possible 

degrees of freedom, such as quantum numbers: spin, etc.
• Another degree of freedom is the particle type itself (electron, 

proton...)
• Each particle is represented by a point in phase space
• Time can also be considered as a coordinate, or it can be 

considered as an independent variable: the variation of the other 
phase space coordinates as a function of time constitutes a 
particle “history”



The angular flux Ψ
The angular flux Ψ is the most general radiometric quantity:

particle phase space density × velocity
or also

derivative of fluence F(x,y,z) with respect to 3 phase space 
coordinates: time, energy and direction vector

Ψ is fully differential, but most Monte Carlo estimators integrate 
it over one or more (or all) phase space dimensions: coordinates, 
time, energy, angle
Fluence F, on the opposite, is the most integral radiometric 
quantity:

where n = particle density in normal space, v = velocity, t = time
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The Boltzmann Equation
l All particle transport calculations are (explicit or implicit) 

attempts to solve the Boltzmann Equation
l It is a balance equation in phase space: at any phase space point, 

the increment of angular flux Ψ in an infinitesimal phase space 
volume is equal to 

sum of all “production terms” 
minus

sum of all “destruction terms”
l Production: 

Sources, Translational motion “in”, “Inscattering'', Particle Production,
Decay “in”

l Destruction:
Absorption, Translational motion “out”, “Outscattering'', Decay “out”

(For convenience, we merge into a single term Particle Production and Decay
“in” and in a similar way we put together Absorption and Decay “out”)



The Boltzmann Equation

Σt = total macroscopic cross section = interaction probability per cm 
= 1/λ t = σtNAρ/A 

λt = interaction mean free path   σt = interaction probability per 
atom/cm2

Σs = scattering macroscopic cross section = σsNAρ/A
This equation is in integro-differential form. But in Monte Carlo it is 
more convenient to put it into integral form, carrying out the 
integration over all possible particle histories.
A theorem of statistical mechanics, the Ergodic Theorem, says that 
the average of a function along the trajectories is equal to the 
average over all phase space. The trajectories “fill” all the available 
phase space.

time dependent absorption
sourcetranslation

scattering
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Visualizing a 2-D phase space...

pE !,

r!

Translational motion: change of position,
no change of energy and direction

Scattering: no change of position,
change of energy and direction

In Out

Inscattering Outscattering

dE/dx: change of position and energy
(translation plus many small scatterings

No arrows upwards! (except for thermal neutrons)



The sources and the detectors
• To solve the Boltzmann Equation, we must define one or more source

and one or more detectors
• A source is a region of phase space: one or more particle types, a range 

of space coordinates, a distribution in angle, energy and time (but often 
the source is simply a monoenergetic monodirectional point source ― a 
“beam”!)

• Also a detector is a region of phase space, in which we want to find a 
solution of the Boltzmann equation

• We can look for solutions of different type: 
q at a number of (real or phase) space points
q averages over (real or phase) space regions
q projected on selected phase space hyperplanes
q time-dependent or stationary
q........

• For each solution we must define a detector



Particle transport
l Particle transport is a typical physical process described by 

probabilities (cross sections = interaction probabilities per unit 
distance)

l Therefore it lends itself naturally to be simulated by Monte Carlo
l Many applications, especially in high energy physics and medicine, 

are based on simulations where the history of each particle 
(trajectory, interactions) is reproduced in detail 

l However in other types of application, typically shielding design, the 
user is interested only in the expectation values of some quantities 
(fluence and dose) at some space point or region, which are 
calculated as solutions of a mathematical equation

l This equation (the Boltzmann equation), describes the statistical 
distribution of particles in phase space and therefore does indeed 
represent a physical stochastic process 

l But in order to estimate the desired expectation values it is not 
necessary that the Monte Carlo process be identical to it



Particle transport Monte Carlo
Application of Monte Carlo to particle transport and interaction:

l Each particle is followed on its path through matter
l At each step the occurrence and outcome of interactions are decided 

by random selection from the appropriate probability distributions
l All the secondaries issued from the same primary are stored in a 

“stack” or “bank” and are transported before a new history is started
l The accuracy and reliability of a Monte Carlo depend on the models 

or data on which the probability distribution functions are based
l Statistical accuracy of results depends on the number of “histories"
l Statistical convergence can be accelerated by “biasing" techniques.



Particle transport Monte Carlo
Assumptions made by most MC codes:
l Static, homogeneous, isotropic, amorphous media and geometry 

Problems: e.g. moving targets*, atmosphere must be represented by 
discrete layers of uniform density, radioactive decay may take place in a 
geometry different from that in which the radionuclides were produced*. 

l Markovian process: the fate of a particle depends only on its actual 
present properties, not on previous events or histories

l Particles do not interact with each other
Problem: e.g. the Chudakov effect (charges cancelling in e+e– pairs)

l Particles interact with individual electrons / atoms / nuclei / 
molecules
Problem: invalid at low energies (X-ray mirrors)

l Material properties are not affected by particle reactions
Problem: e.g. burnup



Practical implementations

P1 P2 P3 P4 P5 P6 P7 P8 P9 .. PN

Track through geometry
Random distance to interaction

Continuous processes
Estimators

particle exits the problem before interaction
Estimators

particle dies
(below transport threshold,

discarded..)
Estimators

Interaction
Generate secondary particles 

Estimators

fill the “stack” with particle ID, E, x, θ….

take one particle from stack
and follow it

Empty stack: 
end “history”
start with new 
primary
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Statistical Errors:
• Can be calculated for single histories, or for batches of several 

histories

• Distribution of scoring contributions by single histories can be very 
asymmetric (many histories contribute little or zero)

• Scoring distribution from batches tends to Gaussian for  N →∞, 
provided σ2 ≠ ∞ (thanks to Central Limit Theorem)

• The standard deviation of an estimator calculated from batches or 
from single histories is an estimate of the standard deviation of the 
actual distribution (“error of the mean”)

• How good is such an estimate depends on the type of estimator and 
on the particular problem (but it converges to the true value for N → 
∞)



Statistical Errors
l The variance of the mean of an estimated quantity x (e.g., fluence), 

calculated in N batches, is:
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where:
ni= number of histories in the i th batch
n = Σni= total number of histories in the N batches

xi = average of x in the i th batch: 

where xij is the contribution to x of the jth history in the ith batch
In the limit N = n, ni =1, the formula applies to single history statistics
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Statistical Errors
Practical tips:

• Use always at least 5-10 batches of comparable size (it is not at 
all mandatory that they be of equal size)
• Never forget that the variance itself is a stochastic variable

subject to fluctuations
• Be careful about the way convergence is achieved: often 

(particularly with biasing) apparently good statistics with few 
isolated spikes could point to a lack of sampling of the most 
relevant phase-space part
• Plot 2D and 3D distributions! In those cases the eye is the best 

tool in judging the quality of the result



Statistical errors, systematic errors, and... mistakes

Statistical errors, due to sampling (in)efficiency
Relative error       Quality of Tally (from an old version of the MCNP 

Manual)
50 to 100%           Garbage
20 to 50% Factor of a few
10 to 20 Questionable

< 10%              Generally reliable

lThe MCNP guideline is empirically based on experience, not 
on a mathematical proof. But it has been generally 
confirmed also working with other codes



Statistical errors, systematic errors, and... mistakes
Systematic errors, due to code weaknesses

lApart from the statistical error, which other factors affect 
the accuracy of MC results? 

q physics: different codes are based on different physics models. 
Some models are better than others. Some models are better in a 
certain energy range. Model quality is best shown by benchmarks 
at the microscopic level (e.g. thin targets)

q artifacts: due to imperfect algorithms, e.g., energy deposited  in 
the middle of a step*, inaccurate path length correction for multiple 
scattering*, missing correction for cross section and dE/dx change 
over a step*, etc. Algorithm quality is best     shown by 
benchmarks at the macroscopic level (thick targets, complex 
geometries)

q data uncertainty: an error of 1% in the absorption cross  section 
can lead to an error of a factor 2.8 in the  effectiveness of a thick 
shielding wall (10 attenuation     lengths). Results can never be 
better than allowed by available experimental data!



Statistical errors, systematic errors, and... mistakes

Systematic errors, due to user ignorance
l Missing information:

q material composition not always well known. In particular 
concrete/soil composition (how much water content? Can be 
critical)

q beam losses: most of the time these can only be guessed.    Close 
interaction with engineers and designers is needed

q presence of additional material, not well defined (cables, 
supports...)

q Is it worth to do a very detailed simulation when some parameters 
are unknown or badly known? 

Systematic errors, due to simplification
l Geometries that cannot be reproduced exactly (or would require too 

much effort)
l Air contains humidity and pollutants, has a density variable with 

pressure 



Statistical errors, systematic errors, and... mistakes
Code mistakes (“bugs”)
l MC codes can contain bug

q Physics bugs: wrong models, bad implementation of a model. For
example: non-uniform azimuthal scattering distributions, energy non-
conservation...

q Programming bugs (as in any other software, of course)
User mistakes
l mis-typing the input: but the final responsibility is the user’s
l error in user code: use the built-in features as much as possible!
l wrong units
l wrong normalization: quite common
l unfair biasing: energy/space cuts cannot be avoided, but must be done with

much care
l Double-counting: forgetting to check that gamma production is available in

the neutron cross sections (e.g. Ba cross sections)



Analog vs. Biased - 1

Analog Monte Carlo

• samples from actual phase space distributions
• predicts average quantities and all statistical moments of any
order
• preserves correlations and reproduces fluctuations (provided the
physics is correct…)

• is (almost) safe and can (sometimes) be used as “black box”

BUT

• is inefficient and converges very slowly
• fails to predict important contributions due to rare events



Analog vs. Biased - 2
Biased Monte Carlo

• samples from artificial distributions and applies a weight to the   
particles to correct for the bias

• predicts average quantities, but not the higher moments
(on the contrary, its goal is to minimize the second moment)

• same mean with smaller variance, i.e., faster convergence

BUT
• cannot reproduce correlations and fluctuations
• requires physical judgment, experience and a good understanding of 
the problem (it is not a “black box”!)
• in general, a user does not get the definitive result after the first  
run, but needs to do a series of test runs in order to optimize the  
biasing parameters

balance between user’s time and CPU time



Reduce variance or CPU time ?

A Figure of Merit

Computer cost of an estimator = σ2 x t

(σ2 = Variance, t =CPU time per primary particle)

• some biasing techniques are aiming at reducing σ, others at reducing t
• often reducing s increases t, and viceversa
• therefore, minimizing σ2x t means to reduce s at a faster rate than 
t increases or viceversa

• the choice depends on the problem, and sometimes a combination of 
several techniques is most effective

• bad judgment, or excessive “forcing” on one of the two variables can 
have catastrophic consequences on the other one, making computer     
cost explode
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Concept
l Variance reduction techniques in Monte Carlo calculations reduce 

the computer time or the opposite to obtain results of sufficient 
precision in the phase-space region of interest.

l Remember: that precision is not the only requirement for a Good 
Monte Carlo calculation. Even a zero variance calculation cannot 
accurately predict natural behavior if other sources of error are 
not minimized.

No Bias and no maze Region Biasing + maze
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Monte Carlo Flavors
Microscopic

Analog
Microscopic

Biased
Macroscopic

Analog
Physics Models Theoretical Theoretical Parameterizations

PDF sampling Physical 
processes

Artificial 
distributions

Fits & Data

Predict Average Yes Yes Yes

Predict Higher Moments Yes - -

Preserves Correlations Yes - -

Reproduces Fluctuations Yes - -

Rare events - Yes -

Predictability Yes Yes -

Convergence Slow Fast privileged
regions

Fast

Safe Yes Almost -



Appendix:
Fluence



Reaction Rate and Cross Section (1/3)
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l We call mean free path the average distance travelled by a  
particle in a material before an interaction. Its inverse,              is the 
probability of interaction per unit distance, and is called macroscopic 
cross section. Both    and     depend on the material and on the particle 
type and energy.

l For N identical particles, the number of reactions R occurring in a given
time interval will be equal to the total distance travelled l times the 
probability per unit distance:

l The reaction rate will be                          ,  where v is the average 
particle velocity.

[cm]l
][cm-1 S

S=S= vtlR d/d!

l S

S= lRS



Reaction Rate and Cross Section (2/3)
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l Assume now that n(r,v)=dN/dV [cm-3] be the density of particles with 
velocity v=dl/dt [cm/s], at a spatial position r. The reaction rate inside 
the volume element dV will be: 

l The quantity                         is called fluence rate or flux density and 
has dimensions [cm-3 cm t-1]=[cm-2 t-1]. 

l The time integral of the flux density                           is the fluence
[cm-2] 

l Fluence is measured in particles per cm2 but in reality it describes the 
density of particle tracks

l The number of reactions inside a volume V is given by the formula:             

(where both    and     are integrated over energy or velocity)

S= vvnVR ),(d/d r!

vvnv ),(), rr =(F!

lvnv d),(), rr =(F

VR SF=
S F



Reaction Rate and Cross Section (3/3)
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• Dividing the macroscopic cross section by N0, the number of 
atoms per unit volume, one obtains the microscopic cross 
section: σ[barn=10-24cm2]

i.e., the area of an atom weighted with the probability of 
interaction (hence the name “cross section”);

• But it can also be understood as the probability of interaction
per unit length, with the length measured in atoms/cm2 (the
number of atoms contained in a cylinder with a 1 cm2 base).

• In this way, both microscopic and macroscopic cross section are
shown to have a similar physical meaning of “probability of
interaction per unit length”, with length measured in different
units. Thus, the number of interaction can be obtained by both
by multiplying by the corresponding particle track-length.

areaeffectiveatom
atom

cm yprobabilit
atoms/cm

y/cmprobabilit 2
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Fluence estimation (1/2)
l Track length estimation:

l Collision density estimation:
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Fluence estimation (2/2)
Surface crossing estimation
l Imagine a surface having

an infinitesimal thickness dt
A particle incident with an
angle θ with respect to the normal
of the surface S will travel a segment dt/cosθ.

l Therefore, we can calculate an average surface fluence by adding 
dt/cos θ for each particle crossing the surface, and dividing by the 
volume S dt:

l While the current J count the number of particles crossing the 
surface divided by the surface:

J= dN/dS
The fluence is independent from the orientation of surface S,

while the current is NOT!
In an isotropic field can be easily seen that on a flat surface J = Φ/2

dt
θ1 =0o

θ2
θ3 =90o

dtS

dt
i

i

dt
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