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Overview:
General concepts:
Ø Monte Carlo foundations
Ø Simulation vs. integration
Random Sampling
Ø Random numbers
Sampling techniques from distribution
Ø by inversion (discrete, continue)



The Monte Carlo method 
Invented by John von Neumann, Stanislaw Ulam and  
Nicholas Metropolis (who gave it its name), and  
independently by Enrico Fermi

N. Metropolis            S. Ulam J. von Neumann          E. Fermi



The ENIAC
Electronic Numerical Integrator And Computer



Integration? Or simulation? 
Why, then, is MC often considered a simulation
technique?

• Originally, the Monte Carlo method was not a 
simulation method, but a device to solve a 
multidimensional integro-differential equation by  
building a stochastic process such that some 
parameters of the resulting distributions would 
satisfy that equation
• The equation itself did not necessarily refer to a 

physical process, and if it did, that process was not 
necessarily stochastic



MC Mathematical foundation
The Central Limit Theorem is the mathematical foundation of the Monte 
Carlo method. In words:

Given any observable A, that can be expressed as
the result of a convolution of random processes,
the average value of A can be obtained by
sampling many values of A according to the
probability distributions of the random processes.

MC is indeed an integration method that allows to solve multi-
dimensional integrals by sampling from a suitable stochastic 
distribution.
The accuracy of MC estimator depends on the number of samples:
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Central Limit theorem
Central limit theorem:
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For large values of N, the distribution of averages (normalized 
sums SN) of N independent random variables identically 
distributed (according to any distribution with mean and 
variance ≠ ∞) tends to a normal distribution with mean      
and variance 
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Mean of a distribution (1)
l In one dimension:

Given a variable x, distributed according to a function f(x), the mean or average 
of another function of the same variable A(x) over an interval [a,b] is given by:
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Or, introducing the normalized distribution f’ :
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Mean of a distribution (2)
l In several dimensions:
Given n variables x,y,z,... distributed according to the (normalized) functions
f’(x), g’(y), h’(z)..., the mean or average of a function of those variables
A(x,y,z) over an n-dimensional domain D is given by:
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Often impossible to calculate with traditional methods, but we can sample N
values of A with probability f’·g’·h’... and divide the sum of the sampled Ai
values (i=1,2,…N) by N:

Each term of the sum is distributed like A (Analog Monte Carlo)
In this case the integration is also a simulation!
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Analog Monte Carlo

In an analog Monte Carlo calculation, not only the mean of the
contributions converges to the mean of the actual distribution, but also
the variance and all moments of higher order:
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Then, partial distributions, fluctuations and correlations are all
faithfully reproduced: in this case (and in this case only!) we have a
real simulation



Simulation: in special cases

• It was soon realized, however, that when the method
was applied to an equation describing a physical
stochastic process, such as neutron diffusion, the model
(in this case a random walk) could be identified with the
process itself

• In these cases the method (analog Monte Carlo) has
become known as a simulation technique, since every
step of the model corresponds to an identical step in the
simulated physical process



Integration without simulation

l In many cases, it is more efficient to replace the actual
process by a different one resulting in the same average
values but built by sampling from modified distributions

l Such a biased process, if based on mathematically correct
variance reduction techniques, converges to the same
expectation values as the unbiased one

l But it cannot provide information about the higher
moments of statistical distributions (fluctuations and
correlations)

l In addition, the faster convergence in some user-
privileged regions of phase space is compensated by a
slower convergence elsewhere



Random sampling: the key to Monte Carlo

The central problem of the Monte Carlo method:
Given a Probability Density Function (pdf), f(x), generate a sample of 

x’s distributed according to f(x) (x can be multidimensional)

The use of random sampling techniques is the distinctive feature of Monte Carlo
Solving the integral Boltzmann transport equation by Monte Carlo consists of:
• Geometry and material description of the problem

• Random sampling from probability distributions of the outcome of physical
events
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(Pseudo)random numbers
l The basis of all Monte Carlo integrations are random numbers, i.e. random

values of a variable distributed according to a pdf
l In real world: the random outcomes of physical processes
l In computer world: pseudo-random numbers
l The basic pdf is the uniform distribution:

l Pseudo-random numbers (PRN) are sequences that reproduce the uniform
distribution, constructed from mathematical algorithms (PRN generators).

l A PRN sequence looks random but it is not: it can be successfully tested for
statistical randomness although it is generated deterministically

l A pseudo-random process is easier to produce than a really random one,
and has the advantage that it can be reproduced exactly

l PRN generators have a period, after which the sequence is identically
repeated. However, a repeated number does not imply that the end of the
period has been reached. Some available generators have periods >1061
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Generatori di numeri pseudo-casuali

15

Il primo generatore di numeri casuali e’ stato il generatore di
von Neumann. La generazione avviene nel modo seguente:

a) si parte da un numero intero di 2m cifre n1 e se ne
considerano le m cifre centrali, ottenendo cosi’ il numero k1;

b) si quadra poi k1 e si ottiene cosi’ l'intero di 2m cifre n2; si
considerano le m cifre centrali e si ottiene k2.

c) Proseguendo in questo modo si ottiene una sequenza di
interi k1, k2,…. e, dividendo ciascuno di essi per 10m, si ottiene
una sequenza di numeri reali (razionali) k1,k2,… nell'intervallo
(0; 1).

Questo generatore ha mostrato diversi problemi e riveste piu’
che altro importanza storica.



Sampling from a distribution
Sampling from a discrete distribution:

Suppose we have a discrete random variable x, that can assume
values  x1, x2, …, xn , … with probability p1, p2, …, pn , …
l AssumeΣipi = 1, or normalize it
l Divide the interval [0,1) in n subintervals, with limits

y0 = 0,  y1 = p1,  y2 = p1+p2, ….

l Generate a uniform pseudo-random number 
l Find the i th y-interval such that

yi -1  <ξ < yi

l Select X = xi as the sampled value
l Since ξ is uniformly random:
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Note the use of the 
cumulative probability!

ξ ∈[0,1)



Sampling from a distribution
Example: simulate a throw of dice:

x1 = 2, x2 = 3, x3 = 4, ..., x11 = 12
y0 = 0, y1 = 1, y2 = 1+2 = 3, y3 = 3+4 = 7, ..., y11 = 35+1 = 36
Normalize:
y0 = 0, y1 = 1/36 = 0.028, y2 = 3/36 = 0.083, y3 = 0.194, ..., y11 = 1
Get a pseudorandom number ξ , e.g.: 0.125
ξ is found to be between y2 = 0.083 and y3 = 0.194
So, our sampled dice throw is x4 = 5



Sampling from a distribution
Sampling from a generic continuous distribution:

l Integrate the distribution function, f(x), analytically or numerically, 
and normalize to 1 to obtain the normalized cumulative distribution:

l Generate a uniform pseudo-random number ξ
l Get a sample of  f(x) by finding the inverse value X = F–1(ξ),

analytically or most often numerically by interpolation (table look-
up)

l Since ξ is uniformly random:
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Again, we use the cumulative
probability: remember, MC is 
integration!



Sampling from a distribution
Example: sampling from an exponential distribution (this is frequently
needed in particle transport, to find the point of
next interaction or the distance to decay)
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• Normalized:

• Sample a uniform ξ є [0,1), e.g.: 0.745 745.01)( =-=¢=
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• Sample t by inverting: )1(ln xl --=t

• But ξ is distributed like 1 – ξ. Therefore our sampled value is:

llxl 294.0745.0lnln =-=-=t

• If we are sampling the next interaction point, we will make a step of 
0.294 mfp

f(x) = e-x/λ , x є [0,∞) 


